SP245-03 Solidtron[™] Solid State Initiator Firing Switch, TO-247

NOTICE: This product is export controlled

Description

The **Solidtron™ SP245-03** is an advanced high-voltage current-controlled thyristor packaged in a **JEDEC TO-247 (5L)** package.

Like all Solidtron[™] products, the internal semiconductor employs high cell density and an advanced termination design to achieve high peak current capability, low conduction loss, low off-state leakage, negligible turn-on delay jitter, and most importantly, extremely high turn-on dI/dt capability. It is ideally suited for a wide variety of capacitor discharge applications requiring precise timing and rapid energy transfer capability.

The JEDEC TO-247 (5L) package is an industry standard package in which the semiconductor is attached to a copper header utilizing 92.5Pb/5Sn/2.5Ag solder. The top of the chip is joined to the appropriate leads using a combination of 0.005" and 0.010" aluminum wire bonds. It is than molded with Hysol MG15F-0140 compound and its leads are tinned with 63Sn/10Pb solder.

The SP245-03 is intended to replace triggered spark gaps of similar voltage and current ratings.

Features

- 1400V Repetitive Off-State Voltage
- VGK = 0V = OFF-STATE
- 100 kA/µs dI/dt capability
- Low Turn-on Delay Time
- Low Conduction Loss
- 3.5kA Repetitive Surge Current

Applications

- LEEFI detonators
- Electronic Safe and Arm Devices
- Ignition Safety Devices
- Firing Modules
- Capacitor Discharge Units

Solidtron[™] SP245-01

Table 1 Maximum Ratings	Symbol	Value	Units
Repetitive Peak Off-State Voltage	V _{DRM}	1500	V
Repetitive Peak Reverse Voltage	V _{RRM}	-10	V
Off-State Rate of Change of Voltage Immunity (V_D =1500V)	dv/dt	1000	V/µSec
Peak Non-Repetitive Surge Current (1/2 Sinusoid Pulse Duration =/<300nSec)	I _{TSM}	4000	А
Peak Repetitive Surge Current (1/2 Sinusoid Pulse Duration =/<300nSec)	I _{TRM}	3500	А
Rate of Change of Current	dI/dt	100	kA/μSec
Critical Capacitor Discharge Event Integral (Underdamped LCR Circuit)	I ² t _{CRITICAL}	TBD	A ² sec
Repetitive Capacitor Discharge Event Integral (Underdamped LCR Circuit)	I ² t _{repetitive}	2	A ² sec
Continuous Gate-Cathode Reverse Voltage	V _{GKS}	-9	V
Forward Peak Gate Current (10 Sec Duration)	I _{GM}	10	А
Required Off-State Gate-Cathode Voltage	V_{GDM}	0	V
Operating Junction Temperature Range	TJ	-55 to +125	°C
Maximum Soldering Installation Temperature (See Moisture Sensitivity Caution	220	°C	
Storage Temperature Range (See Moisture Sensitivity & Solderability Cautions)	-55 to +150	°C	

Table 2 Electrical Characteristics				Measurements			
Parameter	Symbol	Test Conditions		Min	Тур	Max	Units
Anode to Cathode Breakdown Voltage	V _{BR}	V_{GK} = 0V, I_D =100 μ A, $T_C \le 125^{\circ}$ C		1400			V
Anode-Cathode Forward Off-State Current I_{DRM} V_{GK} = 0V, V_D =1See Figure 2.	I _{DRM}	V _{GK} = 0V, V _D =1500V	T _C =-55°C			60	nA
		T _c =25°C		11	100	nA	
			T _c =85°C		180	1000	nA
			T _c =125°C		5	10	μA
Reverse Bias Gate-Cathode Breakdown Voltage	V _{GRRM}	I _{GM} =150μA, T _C ≤ 125°C		9	10		V
Nine Volt Reverse Bias Gate-Cathode Leakage	I _{GM}	I _{GM} V _{GK} = -9V	T _C =25°C		28		μA
Current			T _C =85°C		57		μΑ
See Figure 1.			T _C =125°C		80		μΑ
Two Volt Reverse Bias Gate-Cathode Leakage	I _{GM}	V _{GK} = -2V	T _C =25°C		0.8	2	μΑ
Current See Figure 1.			T _c =85°C		1.9	4	μΑ
			T _C =125°C		2.4	6	μΑ
Gate Trigger Voltage	V _{GT}	V_D = 12V, I_D =1mA	T _C =25°C	450	500		mV
			T _C =85°C	250	350		mV
			T _C =125°C	200	250		mV
Gate Trigger Current	I _{GT}	V_{D} = 12V, I_{D} =1mA, $T_{C} \le 125^{\circ}C$				100	μΑ
Turn-on Delay Time	t _{d(ON)}	0.15μF Capacitor Discharge, T _C =25°C, I _{GT} = 500mA, V _{DD} =1200V, L _S =15nH,			30	60	nSec
Rate of Change of Current	dI/dt				65		kA/µsec
Capacitor Discharge Event Integral	l²t				1.38		A ² sec
Peak Anode Current	I _{DM}	$R_s=0.010\Omega=CVR$		3.2		kA	

Solidtron[™] SP245-01

Usage

The Gate Return lead provides a dedicated connection directly to the cathode of the semiconductor die. This connection consists of a single 0.005" aluminum wire bond. Although it is not mandatory that the Gate Return lead be used as an independent gate return path, its use in this fashion may reduce V=L*dl/dt induced stress on the gate driver components. **CAUTION: Due to the small diameter of its internal bond connection, using PIN 2 as an additional cathode connection is highly discouraged.**

ESD Sensitivity

The SP245-03 has been tested IAW MIL-STD-883 ESD-HBM (Human Body Model) to +/-2000V (Class 1C).

The SP245-03 has been tested IAW ANSI/ESDA/JEDEC/JS-002-2014 for ESD-CDM (Charged Device Model) to +/-1500V (Class C5).

Solderability

The leads of the **SP245-03** are tinned with 63Sn-37Pb solder. Please note that PbSn solder is subject to oxidation growth; however, at a slower rate than the underlying nickel plated leads. Conventional handling and storage practices associated with components having 63Sn-37Pb tinned leads may be applied.

Solidtron[™] SP245-01

Markings and Dimensions

DIMENSIONS ARE IN INCHES

DIMENSION	MIN.	MAX.
Α	0.185	0.209
В	0.087	0.102
С	0.059	0.098
D	0.04	0.055
E	0.016	0.031
F	0.819	0.845
G	0.62	0.64
Н	0.096	0.104
J	0.78	0.8
К	0.167	0.177
L	0.138	0.144
М		0.291
N	0.17	0.216
0	0.242	
Р	0.065	0.07

PART NUMBER

SP = SOLIDTRON[™] PRODUCT 245 = CHIP TYPE -03 = PACKAGE TYPE

DATE CODE

YY = LAST 2 DIGITS OF CALENDAR YEAR WW = WORK WEEK

About Excelitas Technologies

Excelitas Technologies[®] is a photonics technology leader focused on delivering innovative, high-performance, marketdriven solutions to meet the lighting, optronics, detection and optical technology needs of our OEM customers. Serving a vast array of applications across biomedical, scientific, safety, security, consumer products, semiconductor, industrial manufacturing, defense and aerospace sectors, Excelitas stands committed to enabling our customers' success in their end-markets. Our photonics team consists of 7,000 professionals working across North America, Europe and Asia, to serve our customers worldwide.

Excelitas Technologies Solidtron™ Products 284 Great Valley Parkway Malvern, Pennsylvania 19355 USA Telephone: (+1) 937.865.3800 aes@excelitas.com

For a complete listing of our global offices, visit www.excelitas.com/locations

© 2020 Excelitas Technologies Corp. All rights reserved. The Excelitas logo and design are registered trademarks of Excelitas Technologies Corp. All other trademarks not owned by Excelitas Technologies or its subsidiaries that are depicted herein are the property of their respective owners. Excelitas reserves the right to change this document at any time without notice and disclaims liability for editorial, pictorial or typographical errors.